
SoundIT

Your Music, Anywhere

APSC 486/COMM 466

April 5, 2013

Nick Adams Sonal Haria

Samuel Chan Eric Seto

Anuj Mehta Douglas Cheung

	
 2	

TABLE OF CONTENTS

	

LIST	
 OF	
 FIGURES	
 ...	
 3	

INTRODUCTION	
 ...	
 4	

DESIGN	
 ..	
 5	

Backend	
 ..	
 5	

Android	
 ...	
 7	

iOS	
 ..	
 9	

Venue	
 Application	
 ..	
 11	

TESTING	
 ..	
 13	

Enterprize	
 Business	
 Plan	
 Competition	
 ..	
 14	

Launch	
 Academy:	
 “The	
 App	
 Pitch”	
 ...	
 15	

Pacific	
 Venture	
 Capitalist	
 Competition	
 ...	
 15	

UBC	
 IEEE	
 Project	
 Fair	
 2013	
 ..	
 15	

CONCLUSIONS	
 ..	
 16	

FUTURE	
 STEPS	
 ..	
 17	

REFERENCES	
 ...	
 18	

	

	
 3	

LIST OF FIGURES

Figure	
 1:	
 Overall	
 System	
 Architecture	
 ...	
 5	

Figure	
 2:	
 iOS	
 class	
 diagram	
 ...	
 10	

Figure	
 3:	
 Screenshot	
 of	
 venue	
 application	
 ..	
 12	

Figure	
 4:	
 SoundIT	
 Beta	
 Test	
 ..	
 13	

Figure	
 5:	
 3rd	
 place	
 at	
 Enterprize	
 Canada	
 ..	
 14	

	

	
 4	

INTRODUCTION

SoundIT is a new venture formed by six UBC students through the new venture design course at

UBC. The goal of the project was to build not just a technical project, but a business with a

sustainable business model. During the course of this term, the three engineers design the

architecture as well as the many user interfaces for the product, and made significant progress

implementing the product.

From a technical perspective, the project can be broken down into three major components- the

Android and iOS applications that enable users to modify the playlist, the web based venue

application that lets venues stream music, and the backend that provides the supporting APIs and

infrastructure to all the applications. During this term, Nick built the Android app, Sam built the

iOS app and Anuj built the venue application. All three of us worked on the backend database

and the APIs throughout the term.

This report discusses SoundIT’s technical architecture, the tools and processes used by the

engineering team, the progress that has been made, and features yet to be implemented. The

report will start by briefly explaining the architecture of the product and the tools and processes

that were used by the team. It will then describe the progress made in implementing the product

as well as the challenges it faced along the way. This will then lead into a short discussion about

the features that have yet to be implemented. The report will conclude with a discussion about

the lessons learnt during this project, and some of my key takeaways.

	
 5	

DESIGN

Backend

Figure	
 1:	
 Overall	
 System	
 Architecture	

As seen from the figure above, SoundIT consists of four major components- the Android and

iOS mobile applications that consumers use to vote on a venue’s playlist, the web based venue

application that is used to create the playlist and stream the music, and the backend APIs and

database to support the applications.

A major architectural concern we had was the high dependence of our system on a large number

of mobile users in a small and condensed area, all of which were to communicate with the same

backend. Scalability might become a concern depending on the number of users at the location.

In ordinary cases where users are geographically dispersed, scalability can achieved by

geographic database sharding and server redundancy, however this may not work for SoundIT

because of the high concentration of users in any given location.

	
 6	

Fortunately, we did not achieve a large enough user base so that this would prove to be a

problem. In beta tests, our users were limited to 60-100 per venue, and our servers were more

than capable of handling this. While server scalability was always a part of the discussion while

designing our data model and our APIs, we believed that it was best to avoid spending too much

time optimizing for scalability when we did not have a significant user base. Instead, we focused

on optimizing the experience and interface the product offered to its users.

We hosted our backend on Amazon Web Services Elastic Cloud Computing virtual machines.

Amazon’s EC2 offered the most economical, scalable and robust Cloud hosting service. While

we did consider alternatives such as Windows Azure and Google App Engine our prior

familiarity with AWS EC2 led us to go with the technology we were most comfortable with. We

also considered hosting it on our own computers, but to better facilitate team coordination we

had to have a shared environment that was always accessible. To save costs, we chose to use the

free tier of Amazon EC2. We knew that this might result in scalability issues, but since it was

mostly used as a development and staging box, it ended up working fine.

The communication between the backend server and the mobile applications was done via web

APIs. Each mobile client would make an API request whenever required. Anuj designed the

initial versions of the APIs with the consultation of Sam and Nick as per the needs of the mobile

applications. As we iterated, Nick and Sam took on more backend and API responsibilities to

ensure knowledge sharing as well as shared understanding of the entire stack. Each API was

designed for a specific function to ensure that the APIs were reusable and easily maintainable.

The APIs were designed such that both the Android as well as the iOS applications could use the

same APIs. This prevented duplication of logic and enabled the reuse of code.

	
 7	

Android

The Android app was built in Java using the Android SDK developed by Google for Android

developers. We chose to use Eclipse as our development environment because we were also

using it for the backend and because it is the most popular and fully featured development

environment.

The main goals with the Android application were to create a smooth, consistent user experience

for users that would allow them to use the SoundIT service quickly without becoming frustrated

and then move back into their previous activity at the bar. The application is not designed to be

in your face all the time. We want to continue to promote a social atmosphere at our venues and

we believe a simple easy to understand interface will help us achieve that. For these reasons the

interface we have build for the Android app is very minimalistic and easy to use.

Nick was our main Android developer because of his experience with Android development in

the past. Much like iOS there are very little viable options for developing apps so almost

everyone uses similar tools. We did make use of an open source project called

ActionBarSherlock [1]. ActionBarSherlock (ABS) is a project that backports the Android action

bar feature from Android 4.0+ to earlier devices. We are using this because it allows us to

support devices running older versions of Android while still creating a modern UI for users.

No data is persistently stored on the Android client, all the data is retrieved from the backend

server using REST API calls. The REST library we wrote uses a separate thread for the request

so it does not block the main thread. Once the data is retrieved, the returned JSON is parsed and

stored in a client data model. A call is then made on the main thread to update the UI with the

new data. This allows us to dynamically update the data without ever blocking the main thread

so the user can operate functions of our app or close our app and move on to another app.

The album art images that are displayed are dynamically loaded using a thread pool model and

cached in a least recently used cache (LRU cache). The thread pool allows us to download the

images from the web without creating too many threads and web requests and crashing the phone,

	
 8	

even if there are hundreds of images to download because they will be queued. The LRU cache

will cache the images in memory and if the cache becomes full, it will remove them from the

cache in the order of least recently used. We also implemented a disk cache in case the memory

cache becomes full. The disk cache is far slower than the memory cache for loading images, so

all the image loading and saving will also need to be done in a background thread.

At this point, we have all of our data downloaded, but have to be extra careful in how we have

done everything because it is very possible that if we create too many threads the mobile phone

will slow down or the application will crash. Using thread pools in our REST library and our

image caching class we are able to limit the amount of simultaneous threads and network

requests that could cause adverse performance issues for the device.

The UI is composed of an activity class which contains the UI layout for the screen and controls

the main functions of the application. Our activities contain a model called a Fragment, which

represents a behavior or portion of a user interface in an activity. The reason for using fragments

is that they allow for multiple fragments in an activity, and the layout of the fragment can change

depending on the device size and orientation. Fragments are also a more reusable structure than

an activity which is somewhat limited.

The main layouts in the Android application is a ListView. A ListView is a structure that

displays a list of elements on the screen, each element has its own unique layout and and items.

The views in the layout are reused as the user scrolls the device and the data is replaced as

necessary. Because replacing text and images from memory is very fast, and loading images or

text from disk or the web is done in a background thread we are able to maintain a consistent 30

frames per second required for a smooth user interface.

	
 9	

iOS

The iPhone app was created with xCode, the native development environment shipped by Apple

for developing iOS and Mac software apps. We chose xCode for several reasons (many similar

to Android ratifications).

One, Sam’s familiarity with the development environment, the Apple SDK having developed

two apps (one published) to the Apple App Store. Second, Objective-C, the programming

language in which xCode primarily supports iOS development for, is extremely fast and efficient.

Three, xCode is integrated in every sense of the word. Finally, much like Android being mainly

developed on Java with Eclipse+Google SDK, almost all iOS applications are developed using

xCode.

The iOS app was developed using the Model-View-Controller (MVC) programming pattern.

The app was split into three major screens. One, a SplashScreen view and controller class that

initiates connection to the web server and does sanity checks (Internet connection, web server

response etc). Once a valid connection is setup the app automatically goes to the second screen, a

CurrentPlaylist screen that allows the user to vote up their favorite song as well as browse the

current playlist. This screen also has a view and controller class file. Finally, a button on the

CurrentPlaylist screen takes the user to an AddSong screen which lets user browse a library of

songs and add their favorite songs to the current playlist. The AddSong screen is also

implemented in MVC with a controller and view class.

The web server handles the organization of the data into a model abstraction. I simply interact

with it through the REST Network API that I built.

The diagram on the next page details the all my major implementation and class files.

	
 10	

Figure	
 2:	
 iOS	
 class	
 diagram	

	

	
 11	

Venue Application

The venue application was created to allow venue owners to be able to play music from the

SoundIT system. We had the choice of creating native applications for Windows, Mac, iOS and

Android, or creating a web application that could be used on any of these platforms. Creating

native applications had the inherent advantage of an easier to use interface as well as a better

developer access to client resources. However, we decided to start with a web based application

since it would be quicker to prototype with and was a solution that would work at more venues

since both mobile devices and personal computers should have web browsers available. Anuj’s

familiarity with web development also contributed to this decision, as he was the primary venue

application developer.

To play music from the web application, we used HTML5’s stock audio player. We used an

innovative combination of front-end JavaScript and backend Python APIs to loop through the

songs automatically. This was done to ensure that venue owners and administrators do not have

to monitor the music system.

We took several steps to optimize both the user experience provided to venue owners, as well as

the performance of the front-end. The venue application was designed to be a single page

application since the initial functionality was very limited. The user interface was designed to be

aesthetically simple, with clear indication of what the user is able to do at any given time. A

screenshot has been pasted below to show readers what the venue application looked like.

Knowing that the responsive of the website is affected to a significant extent by the number of

HTTP requests per page load, we minimized the number of icons on the page. We enabled server

side caching as well. The caching was hard coded to two weeks from the date of first download.

While we knew that there are better techniques to cache such as basing it on name and date

changed, we decided to focus more on functionality than optimization.

We put our JavaScript and HTML within external files as much as possible to ensure

maintainability, but we ensured that these were limited to one file each. This was one of the steps

we took to reduce the number of HTTP requests. We also put the reference to our CSS at the top

	
 12	

of the HTML file. This ensures that each page is already formatted correctly during initial

rendering by the browser, and prevents any resulting white flashes post-rendering. Since some

browsers make their JavaScript requests serially, we put our JavaScript references at the bottom

of the HTML file. This ensured that the page is loaded and rendered quickly, without having to

wait for the supporting JavaScript files to render.

Figure	
 3:	
 Screenshot	
 of	
 venue	
 application	

	
 13	

TESTING

Beta Test at the Pit Pub, UBC
Our first big milestone was the unveiling and deployment if the SoundIT system at the Pit Pub

UBC in a private beta test for invite-only guests. The goal of the test was to stress test our web

server, gather valuable feedback regarding our mobile apps, and test the system as an integrated

whole for obvious flaws, drawbacks to improve upon.

Figure	
 4:	
 SoundIT	
 Beta	
 Test	

	
 14	

The test was very successful. We got over 70+ unique users and over 500+ API calls over the

short three-hour event. Many of the testers gave us positive feedback as well as valuable critique

and problems with the current system, which we took to heart moving forward.

Enterprize Business Plan Competition
Our second big milestone was SoundIT qualifying for the final round of the Enterprize Business

Plan Competition. The event is a nation-wide business plan competition where start-ups pitch

and compete with their various products. The final round held over ten thousand dollars worth of

cash prize and many industry experts and venture capitalists were on hand to critique, give

feedback and generally provide us with insight on the venture. We came in 3rd place and netted a

one thousand dollar cash prize. More importantly, we got valuable feedback from industry

experts and made some potential mentors in the process.

Figure	
 5:	
 3rd	
 place	
 at	
 Enterprize	
 Canada	

	
 15	

Launch Academy: “The App Pitch”
At this point, our technology was well developed enough and business plan robust enough that

we could enter startup pitching competitions in the app space with minimal additional

preparation.

One such opportunity arose when we heard of the Launch Academy “App Pitch” event where

Launch Academy, an incubator program situated in the Downtown core, and various sponsors

(Microsoft being a notable one) was holding one such pitching event.

Anuj and Sam went down and pitched and showed off SoundIT to the 100+ entrepreneurs and

nearly 30+ app ventures. We won first prize and received a five hundred dollar cash prize and

two tickets to Polygot, a software developer conference held annually in Vancouver, BC.

Pacific Venture Capitalist Competition

Another competition SoundIT was featured at was the Pacific Venture Capitalist Competition

(PVCC). The competition featured prominent venture capitalists (VCs) from Vancouver who

listened to mock funding efforts from various student startup teams from across the nation.

SoundIT once again made the final round out of nearly 30+ applications nationwide and we

pitched our venture to several prominent VCs from professional VC firms and companies.

While we did not win a prize at this competition we came away with valuable feedback once

again, specifically with the business aspects (such as the our monetization strategy) of the

SoundIT venture.

UBC IEEE Project Fair 2013

We also participated in UBC’s end of year IEEE project fair. This fair was to showcase technical

achievements by student teams in electrical and computer engineering at UBC. While we did not

win any monetary prizes at this competition, we got valuable feedback and suggestions from

some ECE faculty.

	
 16	

CONCLUSIONS

This report detailed the process, design and technical developments associated with SoundIT; a

digital jukebox for mobile and web music service that empowers bars, pubs and lounges to let

their patrons control the music. The idea is born from the UBC New Venture Design course,

where three business students and three commerce students work over a semester to attempt to

bring a company to life.

SoundIT attempts to provide a solution to the problem of bad music at clubs, bars and lounges.

On one hand owners find it difficult to find and play music that their given customer

demographic, at any given time, wants. On the other customers dislike having to listen to bad

music and wants some way of interacting and influencing the music being played at their favorite

venues.

Our team presented and tested SoundIT at a variety of test events, business competitions and

pitching events. The first was our public beta test we held at the Pit Pub at UBC where we

gathered 70+ unique downloads and over 500+ API calls. We competed at business plan

competitions such as Enterprize and PVCC, pitching events such as Launch Academy’s App

Pitch 2013, and at a technical project fair- IEEE Project Fair. We were able to successfully demo

our product at each of these events without a single glitch, resulting in very successful technical

operations.

In conclusion, the SoundIT venture was a technical success. The technology was thought out,

alternatives considered and finally decided on. Our development process was smooth and our

final product was feature complete. The engineers have all walked away with more experience in

software development for our respective platforms and, more importantly, gained key insight

into how the business side of a tech company is organized, deals made, and profits gained.

	
 17	

FUTURE STEPS

The SoundIT system is currently fully functional, but we want to continue to add new features

such as location fencing and more analytics to gather data about how our users use our service.

We also want to continue testing our service at venues to verify that it is a stable product that

could be rolled out to multiple places. We also will focus on polishing our apps so they work

even faster and look nicer for consumers to use.

The next step for the SoundIT team is to continue working with local venues to create interest

and allow us to test the SoundIT system as it evolves. Because we were having trouble

generating enough interest from bars, pubs and lounges without going to each one directly, and

we believed that this would continue until we were an established brand, we decided to

investigate radio.

The radio industry generates huge amounts of revenue each year, but is beginning to decline due

to the rise of easily available Internet radio services such as Pandora or Spotify. These Internet

services provide the same service, generate revenue from advertising, just like radio, but also get

tons of analytics and user data about their users. Most radio services use primitive estimation

techniques to perform analytics. Because radio is beginning to decline, we believe that they will

be looking for technologies to help them grow and expand amid the new era of Internet radio.

Modifications to our service will be required, such as branding the application for a specific

radio station and adding radio specific features before we attempt to launch on radio. We are in

talks with radio stations to determine what their technical requirements would be for such a

service and then we can begin to modify our system to simultaneously support both radio and our

traditional business model.

	
 18	

REFERENCES

[1] Wharton, J. ActionBarSherlock, accessed April 4, 2013. http://actionbarsherlock.com/

